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Dynamic Graph Reasoning for Conversational

Open-Domain Question Answering
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In recent years, conversational agents have provided a natural and convenient access to useful information

in people’s daily life, along with a broad and new research topic, conversational question answering (QA).

On the shoulders of conversational QA, we study the conversational open-domain QA problem, where

users’ information needs are presented in a conversation and exact answers are required to extract from

the Web. Despite its significance and value, building an effective conversational open-domain QA system

is non-trivial due to the following challenges: (1) precisely understand conversational questions based on

the conversation context; (2) extract exact answers by capturing the answer dependency and transition flow

in a conversation; and (3) deeply integrate question understanding and answer extraction. To address the

aforementioned issues, we propose an end-to-end Dynamic Graph Reasoning approach to Conversational

open-domain QA (DGRCoQA for short). DGRCoQA comprises three components, i.e., a dynamic question

interpreter (DQI), a graph reasoning enhanced retriever (GRR), and a typical Reader, where the first one

is developed to understand and formulate conversational questions while the other two are responsible to

extract an exact answer from the Web. In particular, DQI understands conversational questions by utilizing

the QA context, sourcing from predicted answers returned by the Reader, to dynamically attend to the most

relevant information in the conversation context. Afterwards, GRR attempts to capture the answer flow and

select the most possible passage that contains the answer by reasoning answer paths over a dynamically

constructed context graph. Finally, the Reader, a reading comprehension model, predicts a text span from the

selected passage as the answer. DGRCoQA demonstrates its strength in the extensive experiments conducted

on a benchmark dataset. It significantly outperforms the existing methods and achieves the state-of-the-art

performance.
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1 INTRODUCTION

In recent years, the rise of machine learning techniques has accelerated the development of
conversational agents, such as Alexa,1 Siri,2 and Xiaodu.3 These conversational agents provide
a natural and convenient way for people to chit-chat, complete well-specified tasks, and seek
information in their daily life. People often prefer to ask conversational questions when they
have complex information needs or are of interest to certain broad topics. Although current
personal assistant systems are capable of completing tasks and even conducting small talk,
they cannot handle information-seeking conversations with complicated information needs that
require multiple turns of interaction [33]. It is therefore essential to endow conversational agents
with the capability of answering conversational questions, which introduces a broad and new
research area, namely conversational question answering (QA).
The previous conversational QA methods [9, 34] often assume that a single gold passage that

contains the answer is given. This simplification is not realistic and neglects the fundamental
role of retrieval. In this article, we consider the problem of conversational QA in an open-
domain setting, namely conversational open-domain QA, which aims to satisfy the users’ complex
information needs with the exact answers extracted from theWeb in amulti-turn conversation. On
the one hand, users’ information needs are presented in a series of questions within a conversation,
along with the problems of co-reference and ellipsis, and so on. On the other hand, it requires to
extract text spans from theWeb as exact answers to answer users’ questions. Conversational open-
domain QA is a more practical but rarely studied task. It is worth mentioning that Qu et al. [32]
have claimed this task as open-retrieval conversational QA. However, they simply append history
questions into the current question and directly employ a traditional open-domain QA pipeline.
The intrinsic characteristics of conversational open-domain QA are not fully explored.

Despite its significance and value, building an effective conversational open-domain QA system
is non-trivial due to the following challenges.
(1) Precisely understand conversational questions based on the conversation context. Unlike self-

contained questions in the single-turn QA, there are some conversational dependencies between
the current question and the conversation context, including both previous questions and previous
answers in a conversation. Each question must be interpreted according to the conversation
context. For example, as shown in Figure 1, the second question “Who influenced her musical
style?” cannot be understood without knowing what “her” refers to, which can be resolved using
the conversation context. However, not all the conversation context is equally important in under-
standing the current turn question, which is usually relevant to only a portion of the conversation
context. It is indispensable to identify the relevant context and filter out the irrelevant context.
(2) Extract exact answers by capturing the dependency and the flow among answers. It is hard to

extract a text span from millions of lengthy passages in the Web as an exact answer to the current
turn question. Fortunately, since the questions in a conversation are coherent, the corresponding
answers are usually related and organized in the Web passages that are logically connected. As
shown in Figure 1, the passages containing the three answers in a conversation are connected via
hyperlinks. Quantitatively, we have observed that in the QBLink dataset [17] about 60% answers
can be found in the two-hop connected passages containing the history answers. Furthermore, as
conversation goes, the corresponding answers usually hop via the hyperlinks and form an answer
flow. The answer flow provides certain clues to indicate where the current turn answer may be
located, but it is tough to capture the answer flow and incorporate it into the existing QA system.

1https://www.alexa.com/.
2https://www.apple.com/siri/.
3https://dueros.baidu.com/.
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Fig. 1. Illustration of conversational open-domain QA. The user asks conversational questions in the

conversation and the QA system extracts text spans from the Web corpus as exact answers to satisfy users’

information needs. As conversation goes, the corresponding answers usually hop via the hyperlinks and form

an answer flow, which provides certain clues to extract the answers.

(3) Deeply integrate question understanding and answer extraction. Certainly, if the question
understanding component cannot understand the current question well, it is hard to accurately
formulate users’ information need and extract the correct answer. Reversely, if it is unable to
extract the correct answer based on the retrieved passages, the question should be re-interpreted
in order to provide more evidence for answer extraction. Therefore, how to design an effective
framework, where these two components can work collaboratively and interact closely deserves
careful consideration.
To address the aforementioned challenges, in this article, we present an end-to-end Dynamic

Graph Reasoning method for Conversational open-domain QA, dubbed as DGRCoQA, as
illustrated in Figure 2. DGRCoQA comprises a dynamic question interpreter (DQI), a graph

reasoning enhanced retriever (GRR), and a Reader. DQI is developed to understand and
formulate the conversational question, while GRR and the Reader are responsible to extract
an exact answer to the question by retrieving the candidate answer passages from the Web
and predicting a single specific text span as the answer, respectively. To be more specific, to
better understand the conversational questions and explore more interactions among different
components in the system, the DQI component is design to consider not only the conversation

context and the current question but also the predicted candidate answers that are returned by
the Reader, which can be deemed as the QA context. With the help of the QA context, DQI
applies the attention mechanism to figure out more relevant information in the conversation
context to refine the current question representation and then proceeds to another iteration of the
answer extraction process. Since the candidate answers represent the feedback from the answer
extraction and they are different in different iterations, DQI will dynamically attend to the different
portions of the conversation context and formulate the dynamic representations that gradually get
close to “optimal” for subsequent processing. Upon receiving the context-well-embedded question
representation, GRR aims to retrieve from the Web the relevant answer passages from which the
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Fig. 2. Schematic illustration of our proposed DGRCoQA model, which comprises a DQI, a GRR, and a

Reader. DQI is developed to understand and formulate the conversational question, while GRR and the

Reader are responsible to extract an exact answer to the question by retrieving the candidate answer passages

from the Web and predicting a single specific text span as the answer respectively.

answer can be located. GRR first constructs a context graph where the nodes are the passages
containing history answers in the conversation context and the passages retrieved from the Web
and the edges are the hyperlinks among them. It is noticed that the context graph is also dynamic
because when the question representation formulated by DQI is dynamic, the passages retrieved
are dynamic as well. To capture the answer flow, GRR generates a series of answer paths over the
context graph, in which the last node in the path is a candidate passage and the other nodes are
history answers. An answer path reasoning mechanism is introduced to rank these answer paths
to reason about the most likely answer flow. In the light of this, passages are ranked based on
the history answers and their paths over the context graph rather than being ranked separately.
Finally, the best selected passages are delivered to the Reader, a MRC model, to predict a text span
as the exact answer.
To summarize, the key contributions of this work are three-fold:

—We propose the DQI to understand conversational questions with both the conversation
context and the QA context. On the one hand, the QA context is utilized to boost the
modeling of conversation context and allows for dynamic question understanding. On the
other hand, more interactions among different components are explored.

—We discover the close relations among answers and the important role of the answer flow
in conversational QA. We propose the GRR to capture the answer flow by reasoning answer
paths over a context graph. As far as we know, this is the first work in conversational QA
that attempts to model the answer relations explicitly on a graph.

— Extensive experiments on the public dataset show significant performance improvement
over the state-of-the-art methods. We have released the codes to the public.4

The rest of this article is structured as follows. In Section 2, we briefly review the related
literature. In Section 3, we explain our proposed method in detail. This is followed by experimental

4https://github.com/liyongqi67/DGRCoQA.
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results and analyses in Section 4. We finally conclude the work and propose future directions in
Section 5.

2 RELATEDWORK

Our work is closely related to conversational QA, open-domain QA, and conversational search.

2.1 Conversational QA

Different from recommended systems [6, 7] that route items to users for alleviating information
overload, QA systems alleviate the problem by providing users simple and accurate answers. A
great many QA systems [23, 29, 30, 51] were developed for this purpose, by utilizing external
sources to obtain the correct answer, including KBQA, document-based QA, and community-
based QA. And conversational QA, which aims to satisfy users’ information needs in multi-turn
conversations, is an emerging topic in the QA community. Based on the released large-scale
dataset [9, 34, 35], researchers developed a series of methods to handle this problem. The previous
conversational QA methods can be categorised into conversational knowledge-based QA

(KBQA) [10, 35, 36] and conversational machine reading comprehension (MRC) [9, 34]
regarding to the knowledge source. Conversational KBQA aims to answer conversational
questions with the relevant facts in a knowledge base, whereas conversational MRC answers a
series of questions over a given passage in a dialog. Comparatively, conversational open-domain
QA is more challenging in a sense that it not only retrieves the relevant passages from the Web
but also extracts the text answer spans. It is worth mentioning that conversational open-domain
QA is rarely studied [1, 32]. Qu et al. [32] claimed this task as open-retrieval conversational QA
and simply append history questions into the current question with a traditional open-domain
QA pipeline. However, the characters of conversational open-domain QA are not fully explored.
The common problem that all above-mentioned conversational QA tasks have to address is

how to understand the conversational questions. For example, there are often questions with
ellipsis and/or coreference resolution problems. The common solution in the existing methods is
to utilize the conversation context to reformulate the current question or refine its representation.
A simple strategy is to pre-append all the conversation context [17] or heuristically select some
words or sentences from the context [9] to expand the current question. Elgohary et al. [16]
constructed the CANARD dataset, which is able to transform a context-dependent question into
a self-contained question. Based on this dataset, a series of question rewriting methods have
been proposed. Specifically, some regard question rewriting as a sequence-to-sequence task to
incorporate the context into a standalone question. For example, Vakulenko et al. [37] used
both retrieval and extractive QA tasks to examine the effect of sequence-to-sequence question
rewriting on the end-to-end conversational QA performance. Differently, the authors in [40]
modeled query resolution as a binary term classification problem. For each term appearing in
the previous turns of conversation, it decides whether or not to add this term to the question in
the current turn. Given the gold passage in conversational MRC, the authors in [33] designed
a history attention mechanism to implement “soft selection” from conversation histories. The
current conversational QA methods have presented various ways to modeling the conversation
context, and utilizing the conversation context to enhance the current question representation.
However, they ignore relations among answers (or answer passages) across the conversation turns.
Some efforts [8, 24] in conversational MRC captures the conversational flow in the given passage
by incorporating intermediate representations generated during the process of answering previous
questions. Differently, we attempted to model relations more directly and explicitly by exploring
the context graph.
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2.2 Open-domain QA

Open-domain, which usually involves arbitrary topics in the real world, is used to distinguish
from the closed-domain [38] and cross domain [20, 22] problem. Recently, open-domain QA [4,
41, 42] refers to the QA system that aims to answer questions from the Web, which has attracted
wide attention from the academic field. In 2017, Chen et al. [4] first introduced neural methods
to open-domain QA using a textual source. They proposed DrQA, a pipeline model with a TF-IDF
based retriever and a neural network based reader that was trained to find an answer span given
a question and a retrieved paragraph. Later, Wang et al. [41] added a ranker between the retriever
and reader to rank the retrieved passagesmore precisely in 2018. Our proposedmethod also follows
the retriever, ranker, and reader pipeline. In addition to TF-IDF and BM25 based retrievers, dense
based retrievers have also been well developed recently [3, 25, 27], where all passages are offline
encoded in advance to allow efficient large-scale retrieval. In [25], the authors showed that the
retriever can be practically implemented using dense representations in open-domain QA, where
embeddings are learned from a small number of questions and passages.
Benefiting from the widely application of Graph Neural Networks on various tasks [21, 45, 50,

52], there are also researchers exploiting the graph-based retriever for open-domain QA. In [2],
authors introduced a graph based recurrent retrieval approach that is learned to retrieve reasoning
paths over theWikipedia graph to answer multi-hop open-domain questions. Distinctly, we aimed
to capture the conversation flow with the help of a conversation context graph. Recently, multi-
round retrieval methods have been proposed [14, 18, 46]. The authors in [18] proposed the multi-
hop retrieval method, which iteratively retrieved supporting paragraphs by forming a joint vector
representation of both question and returned paragraph. Das et al. [14] proposed a gated recurrent
unit to update the question at each round conditioned on the state of the reader, where the retriever
and the reader iteratively interact with each other. Our proposed method also includes a similar
mechanism. Beyond existing methods, our focus is to explore the QA context, particularly the
returned answers, to screen out the most useful information in the conversation context to better
formulate the current question.

2.3 Conversational Search

Conversational search is also related conversational open-domain QA, since they both need to
retrieve passages in multiple turns. The concept of search as a conversation has been around since
the 1980s [12]. Until recently, the idea did not attract a lot of attention due to limitations in data and
computing resources at the time. With the rapid adoption of smartphones and speakers, handling
user’s search requests in the conversational format is a pressing need in commercial systems [11,
19]. Recently, the TREC Conversational Assistant Track (CAsT) initiative constructed an
evaluation benchmark for conversational search [13] and attracted researchers’ attention. Based
on the TREC CAsT datset, a series of methods are developed [13, 26, 48, 49]. Similar to question
rewriting in conversational QA, some researchers reformulated conversational queries into de-
contextualized and fully-grown and ad hoc queries that include all necessary information to
represent the user’s information needs, and then perform ad hoc retrieval with reformulated
queries [48]. These solutions aim to reformulate the conversational query to an ad hoc query
in the sparse bag-of-words space and then leverage standard sparse retrieval pipelines such as
BM25 and BERT ranker [13, 26]. Besides of the query reformulation, some researchers aims
to boost the retrieval by introducing dense retriever to conversational search. For example, Yu
et al. [49] proposed a conversational dense retriever method benefiting from a teacher-student
framework, which learns contextualized embeddings for multi-turn conversational queries and
retrieves documents solely using embedding dot products.
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Both conversational open-domain QA and conversational search require to retrieve passages in
multi-turn conversations. However, conversational open-domain QA differs from conversational
search from the following aspects: (1) Like the relation between open-domain QA and search [5],
conversational open-domain QA is more challenging compared with conversational search
because it requires not only to retrieve the relevant passages but also to extract text spans as
exact answers. (2) The questions in conversational open-domain QA usually are natural language
sentences and factoid, while queries in conversational search are more diverse and may only
include some phrases. And (3) in conversational open-domain QA, there is usually one passage
containing evidence for the system to extract the answer, while multiple passages can be regarded
as positive to a query in conversational search [13, 32].

3 OUR PROPOSED METHOD

In this section, we first define some notations and give a overview of our method. And then we
detail our proposed DRGCoQA model.

3.1 Notation and Overview

For the ease of problem formulation, we first declare some notations. In particular, we use
bold capital letters (e.g., X) and bold lowercase letters (e.g., x) to denote matrices and vectors,
respectively. We employ non-bold letters (e.g., X ) to represent scalars, and Greek letters (e.g., λ) as
parameters. We also use mathcal letters to denote set (e.g., G). If not clarified, all vectors are in the
column form.
Assume that the current turn in a conversation is k and the current question is qk . We are

given the conversation context Hk = {q1,a1, . . . ,qk−1,ak−1},5 and a large passage collection C =
{p1,p2, . . . ,pNC }, where NC is the number of passages in C. Our research objective is to train an
effective conversational open-domain QA system, towards extracting the correct answer ak from
a relevant passage in C.
As illustrated in Figure 2, our proposed DRGCoQA comprises the following three components.

DQI receives as input the current question qk , the conversation context Hk , and the context, i.e.,
predicated answer âk , returned from the reader if any. It generates a question vector representation
via an attention mechanism. Notably, it dynamically attend relevant information of Hk based on
different returned candidate answers. We repeat the above process for Nt rounds. And then GRR
is followed to retrieve a list of passages Pr = {p1,p2, . . . .,pNr

} that is determined relevant to
the question representation vector from a large passage collection C, where Nr is the number of
retrieved passages. It first constructs a context graph G, where node are passages that contains
the history answers in conversation context and passages retrieved via a dense retriever, edges
represent hyperlinks among passages. Hereafter, GRR selects passages that may contain the
current answer and by reasoning the most possible answer path in the context graph. Finally,
the passages Pr selected by GRR are passed to the Reader to extract the text answer span âk . We
elaborate each component in the following sections.

3.2 Dynamic Question Interpreter

To better understand the current question qk with the conversation context Hk , we propose the
DQI component. As shown in Figure 3, DQI utilizes the QA context âk from the reader to attend
relevant information in Hk rather than heuristically appending all of the Hk to qk . In light of
this, more interactions among different components are considered in the system. And thus DQI

5It is noticed that the history answers are also included in Hk if the true history answers are allowed to use.
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Fig. 3. Illustration of the DQI. DQI utilizes the QA context, i.e., predicted answers, to dynamically attend

useful information of the conversation context. It is excepted to generate optimal question vectors for the

subsequent components after receiving feedback from Reader.

generates the question embedding vector that is expected optimal for the following GRR and
Reader components.
To obtain the QA context from the Reader, we first generate an initial question vector. We

pre-append all history questions {q1,q2, . . . ,qk−1} to the current question qk , denoted as q∗
k
. To

accommodate the BERT [15] based question encoder, we introduce two special tokens, [CLS] and
[SEP]. q∗

k
is represented as a text sequence “[CLS] q1 [SEP], . . ., qk−1 [SEP] qk [SEP]”. We obtain

the question representation vector vq , which is formulated as,

vq =WqFq (q
∗
k ), (1)

where Fq is the BERT based question encoder, Wq is the question projection matrix, and vq ∈
R
dq . Benefiting from the self-attention architecture in BERT, the correlation between the current

question qk and the items of conversation context is expected to learn. And then we deliver the
current question vector vq to the following GRR and Reader to obtain the predicated answer âk .

The predicted candidate answer âk is then incorporated into the conversation context Hk and
the current question qk in the form of triplet {qit }k−1i=1 , where each triplet qit contains the current
question qk , the candidate answer âk , and the ith history question qi and answer ai in Hk . It
is formulated as “[CLS] qk [SEP] âk [SEP] qi [SEP]ai [SEP]”. As such, interactions among the
conversation text, the current question and the QA context are encouraged based on the self-
attention mechanism in BERT. The representation of each triplet qit , denoted as viqt , is calculated
as,

viqt =WqFq (q
i
t ). (2)

A history attention network is then followed to aggregate the k − 1 representation vectors into
the refined question vector vq with learned attention weights. Formally, the attention layer is
defined as follows, ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

αi =
exp(Wav

i
qt
)

∑k−1
i=1 exp(Wav

i
qt )
,

vq =

k−1∑

i=1

αiv
i
qt
,

(3)

whereWa ∈ R1×dq , αi denotes the attention weight of the ith triplet, and vq ∈ Rdq . The attention
weights help to capture certain contexts that are more relevant to the current question. Basically,
this is a turn-level attention mechanism and the more relevant items of conversation context
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Fig. 4. Illustration of the GRR. GRR contains context graph construction, multi-level embedding layer, and

answer path reasoning layer.

are expected to get more weights. We repeat the above process for Nt rounds, and obtain a
number of predicated answer from the Reader. Based on different returned answers, DQI calculated
different attention weights and thus dynamically attend relevant information in conversation
context. Finally DQI generates the final question vector vq in the final round.

3.3 Graph Reasoning Enhanced Retriever

Essentially, our proposed GRR aims to retrieves the relevant passages that contains the correct
answer of the current question from a big collection C. Based on the observation that answers
are highly related in conversational QA and logically distributed, we design GRR to model the
answer flow by reasoning answer paths over a context graph. In general, the GRR goes through
the following three steps: context graph construction, multi-level embedding, and answer path
reasoning, as illustrated in Figure 4.
Context graph construction. We aims to construct a context graph G =< PG,E >, where
PG are some passages in C and E represent hyperlinks among them. To conduct a comprehensive
context graph that contains enough information for our model to reason answer paths and retrieve
the correct passages, we set PG from multi sources, formulated as

PG = {Pha ∪ Pdr ∪ Pex }, (4)

where Pha , Pdr , and Pex denote the set of passages that contain previous gold/predicted answers,
the passages returned by a dense retriever,6 and the passages expanded via hyperlinks, respectively.

6We also include passages from a TF-IDF based retriever as supplementary. We pre-append the history questions to the

current question and input the reformulated question to the TF-IDF retriever to retrieve the relevant passages.
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Specifically, Pha is obtained as follows,

Pha = {pi ,pi ∈ C ∧ pi ∗ Hk }, (5)

where pi ∗Hk denotes that one of the history answers inHk can be extracted from the passage pi .
Pdr is obtained from a dense retriever. In particular, for each passage pi in C we obtain its

representation vip as follows,

vip =WpFp (pi ), (6)

where Fp is the BERT based passage encoder, Wp is the passage projection matrix, vip ∈ Rdp , and
dp is equal to dq . And we accumulate all the embedding vectors of passages in C as an embedding

matrix Ep , where Ep ∈ RNC×dp . It is critical that passage encodings are independent of questions
in order to enable storing precomputed passage encodings and executing the efficientmaximum

inner product search (MIPS) algorithm [25, 27]. Otherwise, any new question would require
re-processing the entire passage collection (or at least a significant part of it). Benefiting from this,
we can calculate the similarity scores via the inner product of a given question embedding vq and
all of the passage efficiently, and select the top-Ndr passages Pdr = {p1, p2, . . ., pNdr

}, where Ndr

is the number of the passages in Pdr .
So far, we have obtained Pha and Pdr . We then obtain Pex by collecting passages that connected

passages in Pha or Pdr via hyperlinks. In particular, both the passages that point to passages in
Pha ∪ Pdr and the passages that jump from Pha ∪ Pdr via hyperlinks are included into Pex .
We will detail how these hyperlinks are obtained in Section 4.1. Via Equation (5), we obtain a
comprehensive passage set PG . We regard the passages in PG as nodes and hyperlinks among
them as edges to construct a context graph G, where NG denotes the number of passages in G.
Notably, we regard the hyperlinks as undirected and thus the context graph is an undirected graph.
It is noticed that since the question vector vq formulated byDQI is dynamic in each round, different
passages are retrieved and thus the context graph is dynamic.
Multi-level embedding. For passages in the context graph G, we aims to represent them from

the following three levels: graph structure level, conversation turn level, and semantic level. As
claimed in the Introduction, the gold passages that contain correct answers are usually logically
distributed in the corpus and connected via hyperlinks. Therefore, we aim to represent the passages
from the graph structure level to address the relations among passages. Besides, the conversation
turn level is used to indicate the passages’ positions in a conversation, which is important for the
conversation QA system [33, 34]. And the semantic embeddings are also included to represent the
context of passages. These multi views of representations have been verified in various tasks [43,
44], which makes our DGRCoQA model can learn the passage embeddings from diverse views.

To take full advantage of the graph structure information, we apply a Graph Attention
Network [39] to update the embeddings of the passages in G. For each passage pi in G, we input
it to a BERT encoder to obtain its embedding vip by Equation (1). For each node i in G, we can
update its embedding via a GAT layer as,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

αi j =
exp(σ (W1

G ([W
2
Gv

i
p ,W

2
G ]v

j
p )))∑

l ∈Ni exp(σ (W
1
G
([W2

G
vip ,W

2
G
]vlp )))

,

vipд =
∑

j ∈Ni
αi jW

3
Gv

j
p ,

(7)

where vipд represents the graph structure aware embedding for each passage pi , v
i
pд ∈ Rdpд , and

Ni is the neighbor nodes of node i in graph G. [, ] represents the concatenate operation and σ
denotes the activate operation. In practice, we use multi-head attention mechanism and multi
GAT layers. To indicate a passage in G contains the history answers or not, and further to indicate
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its conversation turn if it contains a history answer, we initialize a turn embedding matrix Et . Et
is an embedding matrix with the size (Nt + 1) × dpt , where Nt is the max turn in the dataset and
dpt is the dimension of each vector in Mt . For each passage pi in G, we encode its conversation
turn into a one-hot vector, denotes as vit . It is worth mentioning that we set the conversation turn
as 0 for the passages do not contain history answers. Thereafter, we obtain the conversation turn
level representation for each passage pi in G as follows,

vipt = Etv
i
t . (8)

Notably, turn embedding matrix Et is updated in the training process and expected to learn
the turn position information. We also reserve passages’ embeddings obtained via Equation (6) as
semantic embeddings, denoted as vps . A forward neural network is followed to fuse the three level
embeddings, formulated as,

vim =Wm

[
vipд , v

i
pt , v

i
ps

]
, (9)

where [, , ] denotes the concatenate operation, andWm ∈ Rdp×(dpд+dpt+dp ) .
Answer path reasoning. Although a GAT is utilized to model the graph structure and a turn

embedding matrix is introduced to indicate the history answers, the relations between the current
answer and history answers are not explicitly explored. As claimed before, as conversation goes,
the answers hop via hyperlinks and form an answer flow path. To catch the in-depth answer
relations, we further propose the answer path reasoning mechanism to capture the answer flow.
We first generate a series of candidate answer paths based on the context graph G. An answer

path is denoted as a sequence of passages. Specifically, for each passage pi in G, we generate an
answer path APi , as follows,

APi = {pa1 , f (pa1 ,pa2 ,G),pa2 , . . . ,pak−1 , f (pak−1 ,pi ,G),pi }, (10)

where pak−1 denotes the passage contain the history answer ak−1 and f () denotes a path search
algorithms. The path search algorithm f () returns a shortest path between two nodes over a graph.
For example, f (pa1 ,pa2 ,G) returns a sequence of the internal nodes between node pa1 and node
pa2 over the graph G. If there is no path between the two nodes, we set f () to return a virtual node
to indicate there is no path. For example, as shown in Figure 4, the answer path {A,B,C,X ,E} is
generated via Equation (10) for node E, and X is a virtual node. Notably, the randomly initialized
embedding of the virtual node is updated in the training process and expected to learn to indicate
that there is no path.
Since the answer paths for each passage in G are obtained, we then reason the most possible

answer flow path.We input each answer pathAPi with their corresponding embeddings obtained
from multi-level embedding layer to a Recurrent Neural Network (RNN), formulated as,

viAP = RNN(APi ), (11)

where viAP denotes the answer path aware embedding for each passage, and RNN denotes the
sequential modeling network. Specifically, we input the sequential passages in the answer path
associated with their embeddings vim into the RNN. We obtain the embedding vector from the
last hidden state as the final sequential embedding of an answer path. It is expected that the in-
depth relations among answers can be captured via the sequential modeling network. Based on the
answer path aware embeddings viAP , we calculate the similarity scores between the question and

the passages in G. Specifically, we obtain the question embedding vq by Equation (1) and calculate

the similarity score S ia of passage pi to vq as follows,

S ia =
exp
(
viAPv

T
q

)

∑NG
i=1 exp

(
viAPv

T
q

) . (12)
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Finally, the top-Nr passages Pr are selected according to their ranks based on similarity
calculation, where Nr denotes the number of passages in Pr . Pr is then passed to the Reader
for further processing.

3.4 Reader

Given the list of passages Pr , the Reader aims to extract a text span as an exact answer for the
question. Following the conventional methods, we also incorporate a Ranker component to re-
ranks the passages more precisely. We first construct the reformatted text sequence [q,pi ] by
concatenating the question text and the passage pi text. [q,pi ] is “[CLS] q

∗
k
[SEP] pi [SEP]”. For

each token tokenj in [q,pi ], a BERT encoder generates its representation v
j
to , and for the whole

text sequence, BERT encoder generates its representation viq,p . Following the previous work [32],
we set the start and end tokens to [CLS] for unanswerable questions and expect the system can
learn to discriminate these unanswerable questions.
Ranker conducts a listwise re-ranking of the top-Nr passages received from GRR and calculates

the re-ranking score for each passage pi in Pr as,

S ib =
exp
(
viq,pWra

)

∑Nr

i=1 exp
(
viq,pWra

) , (13)

whereWra ∈ Rdq×1. Reader then predicts an answer span by computing two scores for each token
j in passages in Pr as the start token and the end token, respectively, formulated as,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

S js =
exp
(
v
j
toWs

)

∑Nto

i=1 exp
(
v
j
toWs

) ,

S je =
exp
(
v
j
toWe

)

∑Nto

i=1 exp
(
v
j
toWe

) ,
(14)

where Nto is the number of tokens, and both Ws and We ∈ Rdq×1. Finally, the text span with
the highest score is extracted as the answer. We will detail the inference process in the following
section.

3.5 Training and Inference

Training. Recall that we encode the large collection of passages C offline for efficient retrieval.
Specifically, we follow the previous work [49] to pretrain a passage encoder so that it can provide
reasonably good retrieval results to the subsequent components for further processing. After
offline encoding, a set of passage vectors are obtained. Note that while the parameters of the
passage encoder Fp are fixed after pretraining.
We have DQI, GRR, Ranker, and Reader components in our system. We respectively define the

GRR loss LGRR and the ranker loss Lranker as follows,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

LGRR = −
Nr∑

i=1

(
y log

(
S ia
)
+ (1 − y) log

(
1 −
(
S ia
)))
,

LRanker = −
Nr∑

i=1

(
y log

(
S ib

)
+ (1 − y) log

(
1 −
(
S ib

)))
,

(15)

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 82. Publication date: January 2022.



Dynamic Graph Reasoning for Conversational Open-Domain Question Answering 82:13

where S ia and S i
b
are the GRR score and ranker score of the passage pi in Pr , respectively. The

reader loss Lr eader is formulated as,

LReader = −
Nto∑

j=1

(
y1 log

(
S js
)
+ (1 − y1) log

(
1 −
(
S js
)))

−
Nto∑

j=1

(
y2 log

(
S je
)
+ (1 − y2) log

(
1 −
(
S je
)))
,

(16)

where y1 and y2 indicate whether the token is the start token and the end token, respectively.
Considering the limitation of GPU memory, we first train the DQI, the ranker, and the reader
jointly via the sum of their losses, and then train DQI and GRR separately.
Inference. For each passage in Pr , we obtain the GRR score Sa and the ranker score Sb by

Equations (12) and (13), respectively. For each token, the reader then assigns it the probabilities of
being the start token Ss and the end token Se . Following the convention [15, 32], we consider the
top 20 text spans only to ensure tractability. Invalid predictions, including the cases where the start
token comes after the end token, or the predicted span overlaps with a question in the conversation
context, are all discarded. The predicted score S of a potential answer is then calculated as,

S = Sa + Sb + Ss + Se . (17)

The model finally outputs the answer span with the maximum overall score to respond to the
current question.

4 EXPERIMENTS

4.1 Dataset

To conduct experiments, we used the public available dataset OR-QuAC [32], which expands the
QuAC dataset [9] to the open-domain QA setting. Each conversation in this dataset contains a
series of questions and answers. For each question, there is a god passage that contains a answer
text span. There are totally 5,644 conversations covering 40,527 questions. The passage collection
is from the English Wikipedia dump file of 10/20/2019, and it contains about 11 million passages.
To construct the context graph as mentioned before, we collected hyperlinks in the Wikipedia.

Specifically, in a Wikipedia page, there are some words are tagged with hyperlinks and can be
clicked to turn to another Wikipedia page. For example, as shown in Figure 1, there is a sentence
“As a pre-teen, she enjoyed bubblegum popacts including Hanson and Britney Spears” in the
Wikipedia page7 titled “Taylor Swift”. The words “Hanson” and “Britney Spears” are linked
to Wikipedia pages titled “Hanson (band)”8 and “Britney Spears”,9 respectively. We crawled
the hyperlinks in the Wikipedia via Wikiextractor.10 The statistics of the above dataset are
summarized in Table 1.

4.2 Experimental Settings

Evaluation Protocols. As claimed before, conversational open-domain QA requires to first
retrieve the gold passage from the Web and then predict a text span as the answer. Therefore, we
evaluate a conversation open-domain QA system from the aspects of Web retrieval and text span
prediction. To evaluate the Web retrieval performance, we applied the Recall, Mean Reciprocal

7https://en.wikipedia.org/wiki/Taylor_Swift.
8https://en.wikipedia.org/wiki/Hanson_(band).
9https://en.wikipedia.org/wiki/Britney_Spears.
10https://github.com/attardi/wikiextractor.
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Table 1. Statistics of the Dataset

items Train Dev Test

QA pairs
# Dialogs 4,383 490 771

# Questions 31,526 3,430 5,571
# Avg.Questions per Dialog 7.2 7.0 7.2

Collection # passages 11 million

Hyperlinks
# Hyperlinks 105 million

# Avg. hyperlinks per passage 17

Rank (MRR), NDCG as well as MAP to evaluate the Retriever component of the baselines and
our methods. Following the previous work [9, 32], we employed the word-level F1 and the human

equivalence score (HEQ), which are twometrics provided by the QuAC challenge [9] to evaluate
the text span prediction. HEQ computes the percentage of examples for which system F1 exceeds or
matches human F1. It measures whether a system can give answers as good as an average human.
This metric is computed on a question level (HEQ-Q) and a dialog level (HEQ-D).

Implementation Details. We utilized the pretrained passages embedding vectors released
in [49] to make a fair comparison. The dq , dp are both set to 128, and Nr is set to 5, the same
as [32]. Limited by our GPU memory, Nt is set to 2. There are two GAT layers, where the numbers
of heads are 128 and 64, respectively. The passage embeddings are stored in a 2080Ti card and the
model is in another 2080Ti card. We used the GRU with one layers and 128 hidden size for the
RNN. To train our model, we set the batch size to 1 and use Adam optimizer with learning rate
0.0001.

4.3 Baselines

To justify the performance of CGRCoQA,we comparedCGRCoQAwith the existing conversational
open-domain QA methods [31, 32]. We also compared our model with the methods from open-
domain QA [4, 47], conversational question rewrite [48], and conversational search [28, 49], as
follows,

—DrQA [4]: This model uses a TF-IDF retriever to retrieve relevant passages and a RNN based
reader to extract answers. The original distantly supervised setting is not applied, since the
full supervision is allowed in the dataset and adopted for all the methods.

— BERTserini [47]: It is a open-domain QA problenmethod. This model uses a BM25 retriever
implemented in Anserini11 and a BERT based reader. Their BERT reader is similar to ours.

—ConvDR [49]: It is a dense retriever method for conversational search, which learns
contextualized embeddings for multi-turn conversational queries and retrieves documents
solely using embedding dot products.

—CQE and CQE hybrid [28]: It integrates a conversational question rewrite module into
conversational search pipeline and train the pipeline in an end-to end manner. This model
yields competitive retrieval effectiveness against state-of-the-art multi-stage approaches.
CQE-hybrid is the variant of CQE, which combines of BM25 and dense retrieval scores.

—CQR(BM25) and CQR(ANCE) [48]: CQR is a weakly supervised GPT-2 rewriter method
for conversational search. It aims to generate self-contained questions given conversational
questions.CQR(BM25) is with a BM25 retriever and a Bert based reader for fair comparison.
CQR(ANCE) is a CQR followed a dense retriever and a Bert based reader.

11http://anserini.io/.
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Table 2. Performance Comparison between our Proposed Model and State-of-the-art

Baselines Over Develop and Test Set

Methods
Dev Test

Retriever Reader Retriever Reader
Recall MRR MRR H-Q H-D F1 Recall MRR MRR H-Q H-D F1

DrQA 0.200 0.115 N/A 0.0 0.0 4.5 0.225 0.157 N/A 0.1 0.0 6.3
BERTserini 0.266 0.177 N/A 14.1 0.2 19.3 0.251 0.178 N/A 20.4 0.1 26.0
CQR(BM25) 0.532 0.375 0.488 15.5 0.2 22.4 0.302 0.202 0.293 21.5 0.2 27.2
CQR(ANCE) 0.675 0.576 0.629 18.1 0.4 28.6 0.584 0.457 0.493 27.7 1.0 34.2
ConvDR 0.844 0.662 0.729 18.4 0.2 30.0 0.750 0.616 0.675 35.7 1.4 39.9
LWS - - - 6.0 0.2 20.2 - - - 11.8 1.9 23.1

ORConvQA 0.571 0.429 0.521 17.5 0.2 26.9 0.314 0.225 0.313 24.1 0.6 29.4
CQE 0.606 0.456 0.551 - - 27.4 0.392 0.290 0.397 - - 30.6

CQE-hybrid 0.633 0.489 0.573 - - 27.6 0.431 0.318 0.434 - - 32.1

DGRCoQA† 0.866 0.775 0.782 19.7 0.6 31.5 0.793 0.746 0.751 43.8 1.6 43.9

We use Recall@5 and MRR@5 to evaluate the passage retrieval performance. H-Q and H-D refer to HEQ-Q and

HEQ-D, respectively. Unavailable and inapplicable results are marked by “N/A” and “-”. Best results in each group are

marked Bold. † means statistically significant improvement over the strongest baseline with p < 0.05 in terms of F1.

— LWS [31]: LWS is a learned weak supervision approach proposed for open-retrieval
conversational QA. It can identify a paraphrased span of the known answer in a retrieved
passage as the weak answer, and thus is less demanding on the retriever.

—ORConvQA [32]: It is an open-retrieval conversational QAmethod. It uses a dense retriever,
ranker, and reader pipeline. ORConvQA utilizes a sliding window to append previous
questions.

Following the previous work [32], we evaluated all methods under the setting of no true
history answers. Since the methods from conversational search and conversational rewrite only
handle a part of problems of the conversational open-domain QA, we apply similar downstream
components to these methods as ours for fair comparison.

4.4 Overall Comparison

The results of all methods are summarized in Table 2, from which we have the following findings.
(1) As expected, traditional single-turn open-domain QA methods, i.e., DrQA and BERTserini,

perform worse than the conversational QA, conversational question rewrite, and conversational
search methods. Because they fail to solve the elliptical and coherence problems in conversations
and thus cannot understand the conversational questions very well. It is noticed that LWS is a
conversational open-domainQAmethod butworse than BERTserini. This is because LWS is aweak
supervision approach, which suggests that span match weak supervision is sufficient to handle
conversations with span answers [31].

(2) Regarding to the conversational question understanding, we find that ORConvQA, which
heuristically appends the conversation context to the current question, performs worse than
other conversational QA methods, including CQR, CQE, and ConvDR. Among them, CQE learns
to incorporate the conversational question rewrite and retrieval components into an end-to-
end framework. CQR and ConDR surpasses CQE, because they utilize the gold question as the
supervised signal to embed a question vector and re-formulate a self-contained question text,
respectively.
(3) The dense retriever based methods surpass the BM25 retriever based methods. For example,

CQR(ANCE) and CQR(BM25) have the same conversational question understanding component,
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Fig. 5. Retrieval performance of baselines and our method versus the number of retrieved passages.

but CQR(ANCE) achieves better performance benefiting from the ANCE retriever. It is also verified
that the dense retriever outperforms the heuristic ones in the single-turn QA [25, 27]. On the one
hand, the semantic similarities can be learned and reflected via the distances in the embedding
space. On the other hand, the dense retrievers allow joint learning of different components in the
conversational open-domain QA pipeline.
(4) Our method achieves the best performance, substantially surpassing all baselines. In specific,

our method has the DQI component, which not only identifies the relevant information in the
conversation context but also bridges the question understanding and answer extraction. Besides,
our GRR captures the answer flow and retrieves the relevant passages from the Web. It illustrates
that the tight relations among answers in a conversation play a big part in the answer extraction.
To justify the performance of the retrieval passage list, we reported Recall@K, NDCG@K, and

MAP@K by varying the number of retrieved passages in Figure 5. From Figure 5, we can see that
when the number of returned passages increases, Recall, NDCG, and MAP rise. This is because
more and more gold passages are retrieved with the increased number of returned passages. It
is also noticed that our method significantly outperforms other methods in terms of the three
metrics, which verifies the effectiveness of our retriever. Compared with that in terms of Recall,
the performance gap between our method and baselines are larger in terms of NDCG and MAP.
This is because our method rank the gold passages in the front positions than baselines. NDCG
and MAP are sensitive to the rank position than Recall, therefore our DGRCoQA model surpasses
the baselines more in terms of the NDCG and MAP.

4.5 Component-wise Evaluation

In this subsection, we conducted experiments to answer the following three questions: (1) Does
the DQI add value to our model? (2) How much help does our model get from the GRR? And
(3) Is it necessary to re-rank the passages in the Reader component.

In our DGRCoQA model, DQI incorporates an attention mechanism with the QA context to
attend useful information in the conversation context. To answer the first question, we first
eliminated the whole DQI component and only heuristically appended the history questions to
the current question as replacement. And to verify the effectiveness of the QA context, we also
only removed the returned QA context from Reader but kept the attention mechanism to see the
performance. As to answer the second question, we eliminated theGRR component from ourmodel
and replaced it with a dense retriever in [49]. To answer the third question, we removed the Ranker
component. These variants of our model to further verify the effectiveness of the components in
our system are denoted as follows,
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Table 3. Component-wise Validation of our Proposed Method by

Disabling One Component Each Time

Methods
Retriever Reader

Recall MRR MRR H-Q H-D F1

w/o DQI 0.763 0.722 0.727 36.9 1.0 42.6

w/o QA context 0.777 0.725 0.731 37.4 1.2 43.1

w/o GRR 0.723 0.696 0.706 35.2 0.5 40.6

w/o Ranker 0.792 0.732 - 37.7 1.4 43.5

w/o Conversation context 0.334 0.166 0.333 25.5 0.5 31.0

DGRCoQA 0.793 0.746 0.751 43.8 1.6 43.9

—w/o DQI: DQI is excluded from the pipeline. That is, the question representation vector
is generated via Equation (1) as described in the first round of retrieval. Since there is no
dynamic question modeling, there is no multi-round retrieval process and no feedback from
the Reader.

—w/o QA context:QA context is removed from the DQI component. Originally, the predicted
candidate answer âk is incorporated into the conversation context Hk and the current
question qk in the form of triplet, which is formulated as “[CLS] qk [SEP] âk [SEP] qi [SEP]ai
[SEP]”. To verify its effectiveness, the triplet is formulated as “[CLS] qk [SEP] qi [SEP]ai
[SEP]”.

—w/o GRR: The GRR is excluded from the pipeline. The dense retriever mentioned before is
used to replace our GRR. That is, the passage list Pdr rather than the list Pr is delivered to
the Reader.

—w/o Ranker: The ranker is excluded from the pipeline. And the ranker’s score Sb is
removed from the final predicted score in Equation (17). w/o Conversation context: The
conversation context Hk is removed from the DGRCoQA model and only the current
question qk is used.

The experimental results are summarized in Table 3. By jointly analyzing Table 3, we gained
the following insights. (1) Removing the Ranker component degrades the QA performance. To be
more specific, “w/o Ranker” drops by 0.4 in terms of F1. This statistic reveals the effectiveness
of the ranker component, which ranks the passages with full interactions than the dot product
operation. Although the ranker loss does not influence the retriever, the retriever performance also
decreases. This is because that the joint training mechanism can improve all different components.
(2) DGRCoQA shows the consistent improvements over “w/o DQI” and “w/o QA context”. The
improvements in terms of F1 are 1.3 and 0.8, respectively. Such phenomenon clearly reflects the
great advantage of our dynamic question interpreter. And the gap between “w/o DQI” and “w/o
QA context” further shows that QA context also plays an important role in the DQI component,
because it let the question understanding can receive the feedback from the answer extraction and
then re-understand the conversational questions. (3) DGRCoQA surpasses “w/o GRR”. On the one
hand, it indicates that our observation about the answer flow in conversational QA is helpful to
extract exact answers; on the other hand, the performance gap verifies the effectiveness of the GRR
component, which constructs a context graph and captures the answer flow on it. (4) By comparing
the variants (except w/o conversational context, it is clear that when the GRR is excluded, the
system performance drops the most. We believed that the improvement of our method mainly
comes from the answer path reasoning in GRR. Meanwhile, when the Ranker is excluded, it only
causes less impact on the overall performance. And (5) Removing conversation context from the
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Table 4. Performance Comparison Among Different Methods for

the Context Graph Construction

Methods
Retriever Reader

Recall MRR MRR H-Q H-D F1

w/o ha 0.734 0.708 0.714 36.2 1.0 41.8

w/o dr 0.276 0.268 0.281 24.2 0.5 28.7

w/o ex 0.760 0.723 0.724 37.8 1.4 43.6

-ga 0.900 0.848 0.852 43.8 1.6 46.2

DGRCoQA 0.793 0.746 0.751 40.3 1.6 43.9

model degrades the performance a lot, which is consistent with the experiment results in other
conversational QA works [9, 32, 34]. This is because that some important entities or words are
missed in the single question, and it is hard to precisely understand the user’s information needs
without the conversation context.

4.6 On the Graph Reasoning Enhanced Retriever

Recall that the GRR reasons the most possible answer path on a context graph to select the passage
that contains the answer. GRR constructs a context graph based on the passages that contain
history answers, the passages that initially dense retrieved via a dense retriever, and the passages
expanded via hyperlinks. A natural question is the necessity of utilizing multi sources to construct
the context graph. To answer this question, we designed some variants of our model as follows,

—w/o ha: The passages that contain history answers of the conversation context, denotes as
Pha , are excluded from the context graph construction. We constructed the context graph
based on the passages densely retrieved and expanded the set via hyperlinks.

—w/o dr: The passages that retrieved from the dense retriever, denotes as Pdr , are removed
when constructing the context graph.

—w/o ex: We did not expand passages via hyperlinks when constructing the context graph.
— -ga: We utilized the passages that contained previous gold answers rather than predicted
answers to construct the context graph.

The comparison results among various context graph construction methods are displayed in
Table 4. As the GRR takes responsibility for the Web retrieval, we also reported the retrieval
performance versus the number of retrieved passages in Figure 6. From the results, we had the
following observations:
(1) It can be seen that “DGRCoQA w/o dr” is the worst variant in terms of all the used metrics.

Quantitatively, retrieval performance drops from original 0.793 to 0.276 in terms of Recall and QA
performance drops from 43.9 to 28.7 in terms of F1. Since the GRR cannot densely retrieve passages
from the Web collection and only constructs the context graph based on the passages containing
predicted history answers, the coverage of the context graph must be reduced greatly and hard to
reason the gold passage. In a sense, we can regard our proposed GRR as a reasoning layer followed
the previous retrieval methods and boost them by capturing the conversation flow. Its performance
depends on the initial retriever but is beyond it.
(2) Both “DGRCoQA w/o ha” and “DGRCoQA w/o ex” perform worse than DGRCoQA. This

phenomenon clearly illustrates that the passages containing previous predicted answers and
expanded via hyperlinks are helpful to conduct a comprehensive context graph. On the one hand,
the passages containing previous predicted answers are likely to be related to the current turn
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Fig. 6. Retrieval performance of different methods for the context graph construction versus the number of

retrieved passages.

Fig. 7. QA performance on the test set versus the number of passages in Pdr , the number of retrieved

passages in Pr , and the number of retrieval rounds, respectively.

answer and even have contained the current answer. On the other hand, although the gold passage
is not covered in the initially retrieved passages, it may be included via the expansion.
And (3) it is worth mentioning that “DGRCoQA-ga” surpasses DGRCoQA. This phenomenon

reflects that utilizing the passages containing previous gold answers is better than using predicted
answers. It is because that the current question depends on not only the previous question but also
previous answers, since user may be interested in the previous answer returned by the system and
ask follow-up question about it. If the previous answers are predicted incorrectly, it has been tough
to understand the questions depending on the previous answers. Therefore, utilizing gold answers
can better understand questions and capture the answer flow. It is noticed that our DGRCoQA
model learns to model the dependency between the current question and previous answers, which
is overlooked by previous methods.

4.7 Additional Analyses

In this subsection, we quantitatively analyzed some key variables of our model, including the
number of passages in Pdr , the number of passages in Pr , and the number of retrieval rounds.
We reported the retrieval performance in terms of Recall@5 and MRR@5, as well as the QA
performance in terms of F1, summarized in Figure 7. We then studied the impacts of the three
hyper-parameters separately.
Impact of the number of passages in Pdr . As mentioned in Section 3.3, the nodes of the

context graph partially sources from a dense retriever. Therefore, the number of Pdr , Ndr , is an
import hyper-parameter that needs to be explored. We have conducted experiments to verify its
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necessary in Section 4.6, but how the number of passages in Pdr impacts the performance is
not experimented. To this end, we carried out experiments to verify the impact of the number
of passages in Pdr . The choices of Ndr are from 1 to 5, and the results in terms of Recall, MRR,
and F1, are illustrated in Figures 7(a)–7(c). It is noticed if Ndr is set as 1, the performance greatly
surpasses the performance when Ndr is set as 0. It demonstrates that if the passages from the
dense retriever are not included to conduct the context graph, the performance drops a lot. This
is because that these passages help to locate an appropriate area in the big passage collection, and
thus it contributes to the retrieval of the gold passage. Besides, as the number of passages in Pdr
increases, the F1 score first rises a lot and gradually increases slowly. This experimental result tells
us that more irrelevant passages are also included as the Ndr increases.

Impact of the number of passages in Pr . Ideally, the GRR is expected to retrieve one gold
passage to the Reader to predict a text span. However, GRR is hard to rank the gold passage
in the first position of the rank list. Therefore, a list of passages Pr rather a singe passage is
delivered to Reader in practice. A natural question is that what is the optimal number of passages
should be retrieved and how the number Nr influence the performance. Similarly, we conducted
experiments to explore the number of passages in Pr , and the number is set from 0 to 5. The results
are summarized in Figure 7. We can observe that as the number of passages increases, the F1 score
gradually rises because more and more relevant passages can be scanned by the Reader. Compared
with the GRR, Reader can process the lengthy passages in a more fine-grained level and predict
the text span. However, it is more GPU-memory consuming, thus we only set Nr as 5 following
the previous methods [32].

Impact of the number of retrieval rounds. As claimed before, our proposed DQI repeats Nt

rounds to dynamically attend the conversation context, thus it is worth to exploit the number of
retrieval rounds. However, due to the limitation of the GPU memory, we only tuned this value
when evaluating the system. The results are shown in Figure 7. It is observed that as the Nt

increases, the performance rises and then gradually degrades. This reflects that increasing the
retrieval rounds does not improve the performance continuously. On the one hand, we did not tune
the number of retrieval rounds in the training process. On the other hand, multi-round retrieval
may bring more noise and probably suffer from the error propagation problem.
Besides, we reported the training and test time for our model and other available models. In the

training phase, our model took about 216 minutes every epoch. And the time for ORConvQA and
ConvDR is 178 minutes and 144 minutes, respectively. In the test phase, it took about 0.26s for our
model to answer one question, while the time for ORConvQA, CQR(BM25), and CQR(ANCE) is
0.21s, 0.13s, 0.22s, and 0.24s, respectively. The time consuming of our model is bigger than others,
which is because that the graph reasoning based retriever and multi-round mechanism naturally
take more time.

4.8 Case Study

To gain deeper insights into the performance of our proposed method in conversational open-
domain QA, we listed some examples in Table 5. Each example includes the current question,
history questions, and attention weights calculated in Equation (3). To illustrate our proposed DQI
and GRR, we also listed the labels of the retrieved passages from the GRR of the first round and
second round. From examples in Table 5, we had the following observations.
Current questions. (1) Analyzing the current questions, we found that the coreference problem

is common. For example, the pronoun “he” in question “Did he play any live shows?” refers to the
name “Hank Snow” in the first history question. (2) It is also observed that there may be two
coreferences in one question. For example, for the question “Did he accept and appear on the
show”, “he” and “the show” refer to “Sakis Rouvas” and “the first tv appearance” in the history
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Table 5. Case Study

Current question History questions
Attention 1-round 2-round
Weights Retrieval Retrieval

Did he play any live shows?

What led Hank Snow to Nashville? 0.4015

[1 0 0 0 0] [1 0 0 0 0]
Where did he get his start in Nasville? 0.1832
What was his most popular song? 0.2073

Did he win any awards 0.2080

Why did he burn it?
Did Varg Vikernes commit any arson? 0.5733

[0 0 0 1 0] [1 0 0 0 0]
When was the first case? 0.4267

Did he accept and appear What was Sakis Rouvas’ first
1 [0 0 0 0 0] [1 0 0 0 0]

on the show? tv appearance?

The test samples of our proposed method. Attention weights refer to the attention score computed in Equation (3).

1-round Retrieval, 2-round Retrieval refer to the labels of the top-5 retrieved passages from GRR in the first round of

Retrieval and the second round of Retrieval, respectively.

question, respectively. (3) Moreover, the current question may depend on the history answers. For
the second question “Why did he burn it?”, we cannot clarify what the word “it” means only based
on the history questions, and which turns out to be “the Fantoft Stave Church” in the previous
answer “On 6 June 1992, the Fantoft Stave Church, dating from the 12th century and considered
architecturally significant, was burned”. This observation is consistent with our experiment results
that DGRCoQA-ga largely surpass DGRCoQA without the previous true answers.
Attention weights. (1) By jointly analyzing the history questions and attention weights, we

found that the attention weights approximately reflect the importance of history questions. For
example, in the first and second example, the first history question obtains the largest attention
score. This adheres to our intuition because the first history question usually mentions the topic
of the conversation. (2) It surprises us that the second history question of the second example also
achieves a comparative attention score. As claimed before, in the second example, the gold passage
and answer of the second history question provide important information to help understand the
current question. Therefore, a comparative attention score becomes reasonable because it makes
it easier to retrieve the corresponding evidence to clarify the current question. (3) The attention
weights are not significantly discriminative. For example, in the first example, the attention weight
of the fourth history question is 0.2080 although it may only provide little of useful information.
This is partly due to the fact the questions in a conversation are always related more or less, since
they usually have a same or similar topic.
Retrieval result. Analyzing the results of 1-round of retrieval and 2-round of retrieval, we

found that 2-round of retrieval can make a supplement for the 1-round of retrieval in some cases.
For example, in the third example, 1-round of retrieval does not retrieve the gold passage but
2-round of retrieval does. This may illustrate our dynamically multi-round retrieval method works
partly due to its ability of handling the complex questions. And this observation is consistent with
some recent studies [14, 46] that focus on applying the multi-round retrieval method to answer
the complex questions in open-domain QA.

5 CONCLUSION AND FUTURE WORK

In this work, we explore a rarely studied but practical task, conversational open-domain QA.
Different from the previous conversational QA tasks, conversational open-domain QA requires
to not only understand conversational questions but also extract an exact answer from the Web.
To build a robust conversational open-domain QA system, we pay attention to the three issues:
(1) precisely understand conversational questions with the conversation context; (2) extract exact
answers by capturing the answer dependency and transition flow in a conversation; and (3) deeply
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integrate question understanding and answer extraction. We propose the DGRCoQA model to
handle the three issues, which includes DQI, GRR, and Reader. As far as we know, this is the first
work in conversational QA that models the answer relations explicitly on a graph. To justify our
method, we perform extensive experiments on the public dataset, and the experimental results
demonstrate the effectiveness of our model.
In future, we plan to deepen and widen our work from the following aspects: (1) In this work,

we utilized the hyperlinks in Wikipedia to construct the context graph. Due to the practical
concern that once passages are not from Wikipedia, the hyperlinks among passages are hard to
obtain. We will extend our method by introducing the knowledge graphs (KGs). On the one
hand, the KGs help to conduct the graph structure; on the other hand, the edges usually contain
extra information than links and can be utilized to boost the system. (2) The OR-QuAC dataset is
from the conversational MRC area. There are still some differences between conversational open-
domain QA and conversational MRC. Thus, it is necessary to conduct a dataset more suitable for
the real conversational open-domain QA, where people ask questions for the purpose of their
real information need. And (3), as shown in the Case Study, there are still complex questions in
conversational QA. We will focus on these complex questions in our future work.
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